T=-16t^2+64t+100

Simple and best practice solution for T=-16t^2+64t+100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for T=-16t^2+64t+100 equation:



=-16T^2+64T+100
We move all terms to the left:
-(-16T^2+64T+100)=0
We get rid of parentheses
16T^2-64T-100=0
a = 16; b = -64; c = -100;
Δ = b2-4ac
Δ = -642-4·16·(-100)
Δ = 10496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10496}=\sqrt{256*41}=\sqrt{256}*\sqrt{41}=16\sqrt{41}$
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-16\sqrt{41}}{2*16}=\frac{64-16\sqrt{41}}{32} $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+16\sqrt{41}}{2*16}=\frac{64+16\sqrt{41}}{32} $

See similar equations:

| 2-4(y-3)=5y+20 | | -9b+4b=10 | | 35-7p=-7p-35 | | 3(20-y)+2y=55 | | 13-x/2=6 | | T=-16^2+64t+100 | | 3(x+2)-2(x-5)=5(x-1)-3(x-6) | | 3(5x+10=6x-(x+10) | | 5.4(1+4.1n)=-92016 | | 3(5x+10=6x-(x+10 | | 4p=–8+3p | | 6y+10=3y=34+5y | | 15y-16+6=290 | | -2x-3)+3x-4=6x+14 | | 14x+10-16=180 | | 2(2x-3)+4x=3(-2x+3)+9x | | 49=-7-6x | | 1/5x+4=2/5x | | 7x+10+7x-16=180 | | 32=r-8 | | 1/2(10x+2)=1/3(9x-27) | | -10+r/4=-9 | | 5w+4=3(2w-1) | | 52+x+12=90 | | b/16-6=-7 | | 12x9-3x+15=-49 | | 2.4x+2.3=-1.2x+13.1 | | 8+2x=-6-9(x+2) | | 21/4+y=53/4 | | z-5=1332816 | | 4b+8+9b=-5 | | 2(2m)+4(4m+4)=108 |

Equations solver categories